
U.S. De~artment of Energy

Lawrence
Livermore
National
Laboratory

P reprint
UCRL-JC-137128

Towards a High-Performance and

Robust Implementation of MPI-IO
on top of GPFS

J.-P. Prost, R. Treumann, R. Blackmore, C. Hartman,
R. Hedges, B. Jia, A. Koniges and A. White

This article was submitted to
Europar 2000, Munich, Germany, August 29 - September 1, 2000

January 11,2000

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability Or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it wilt not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge /

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
htt-p: //www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: //www.llnl.gov / tid/Library.html

Towa,rds a High-Peffornmnce a,nd Robust hnl~lcn~ent, a,t, ion

of MPI-IO on t, op of GPFS

Jean-Pierre Prost t, Richard Treulnann~

Robert Blackmore t, Carol Hartman*, Richard Hedges!j,

Bin Jia *, Alice Koniges!i, Alison Whitet

t IBM T..). Wa.t.son R esea.rch ()enter, Rout.e 134,

’Yk)rktown Heights, NY 110598

IBM Elll:erprise Systems Group, 2455 South l{oa.d,

Poughkeel)sie~ NY [2601

* IBM Alma.den Research Cent:er, 650 lla.rry l(oa.d,

San .lose, CA 95120

!i La.wrence l,ivermore Nat.iona.l l,abora.l, ory, 7000 Ea.st. Avenue,

Livermore, CA .9z1550

.Jauua.ry 11_1, 2000

Abstract

MPI-IO/(-IPFS is a prol.ot.ype implement.at.ion of the I/O chapt.er of t.he Message Passing lnt.erface

(MP1) 2 st.mldard. It. use.s I he IBM General PmalM File Syst.em (GPI"S), wil:h prot.ot.yped ext.ensions,

as l.he underlying file sysl;eln. This paper describes {.he features of this prol.otype which support its high

performance and robustness. The use of hints at t.he file syst.em level and at. the MPI-IO lew:l allows

tailoring the use of the file syst.em t.o the application needs. Error handling in colled ive operations

provides robust, errol" reporl, ing and deadlock prevent, ion in case of rel,m’ning errors.

IKeywords: MPI-IO, (’,PI’S, file hint, prefei.ching, error handling, performance, dat.a shipl)ing.

A I)prova.I l)ra[)~

1 Introduction

To provide users wit.h a. port:able and el[icient; int,erfa.ce lot’ pa.rallel I/O, an I/O cha.pt,er was int.roduc(>d hJ
t, he Message F’a.ssing Int.erfa.ce 2 st, a.ndard [leol’.97], based ul)on ea.rlier colla.bora.l.ive work bet, ween resea.rchers
a.t, t, he IBM T..I. Wa.t.son I{esea.rch C, enl.er a.nd the Nasa Ames Na.l, iolm.l lmborat,ory [(~org(:;].

Since a.pl)rova.I of t.he MPl-2 sta.nda.rcl, IBM has been worl,:ing on bot, h l)rotol.ype and producl, imple-
melli.a.t.ions of MPI-IO [’or l:he IBM SF’ system, using l, he II3M General Pa.raJlel File Syst.eln [(;PFS.()8]
l.he urMerlyil~g tile sysl.em. Some t’eal,ures of l.his M Pl-IO prol,ot,.ype depend upon complement.a.ry GPFS
prol.ot, ype work. ’l’his pa.per c/es(:ribes t, fie ma.itt [’eaJ.ures of t, fie prot.ol.ype, referred i.o as MPI-I()/(I~I::’FS.
IBM produci, iml)lement,at.ion worl,: draws on l.he knowledge gained in this prot, ot, yl)e l)rojecl, but t~a.t.ures
t, he prot.ot.ype discussed in t, his paper a.nd [’ea.t, ures of’ eventual IBM producl.s ma.y differ.

The use of GPFS as t.he underlying file syst, em engenders ma.ximmn peri’orma.nce t.hrough a. t, ight, inter-
a.ct.ion between MI)I-IO and GPFS. GPFS is a. high performance file syst.em which present, s a. global view
of’ tiles t.o any client, node. I1. a.llows pa.ralM access t.o t, he da.ta, residing on server laodes t.hrougla t.he IBM
Virtual Shared Disk int,erface. GPFS provides coherent (:aching a.t l, he client., opt.amazed F, ret’et, ching l:ech-
niques, a.nd guarant, ees recoverability from any single point of fa.ilm’e. New hini.s and direct.ives aimecl tat,
improving performa.nce ha.re been prot.ot.yped in l,he G PFS user int, erfa.ce as pari. of l.his project,. These hint.s
and direct.ires axe exploit, ed by MP]-IO either l.ra.nsparent.ly or through MPl_lnfo hini,s t.he user can specify.

To avoid file block conl,elfl, ion among tasks, MPI-IO uses da.ta, shipping. This t.echnique I)inds each
GPFS block t.o a single 1/O agent., which is responsible tbr all accesses l.o this block. For wrii.e opera.t, ions,
t,he t, asl,:s ship t.o ea.eh 1/O agent., a command wit.h thai, agent’s write assignmenl, and t.he data t,o be writt, en.
The agenl,s then perform their assigned file wril.es. For reads, l.he 1,asks ship a. command with the l/O a.genl.’s
read assignmenl.. The agenl.s read tJm file as inst, ruct.ed a.nd ship t, he ¢la.l.a l.o the appropria.te tasks. The
GPF,C’3 blocks are hotrod t.o a. set ol) 1/O agenl,s according t.o a. round-robin striping scheme. MPI-IO/(~PFS
allows t.fie Ilser l,o define l.he sl.ripe size. The sI.rit)e size a.lso controls t, he amounl, of’ buffer space each 1/O
agent, uses in el.oh da.t,a, access opera.tion.

M PI-IO/G P FS is a robust, a.nd user-friendly imptemenl.a.t,ion, li, prevent.s deadlocks when a.n error oceurs
only on a subset, of l.he l,asks pa.rt.ieipaJ, illg in a. collect.ire 1/O operat.ion. The scheme consist, s in having each
t.ask rettlrn either an error code corresponding 1,o l.he error which oecm’red locally or a code st.ipula.t.ing l.ha{.
a.n error oc(:m’red on ariel.her part, icipa.t.ing l.ask. The MPI st,andard allows a user t,o inquire in a. port, able
wa.y about, (,he error class of the error rel, urned a.nd Lake Lhe appropria.t,e act, ion on ea.ch t, ask. [n addition,
errors which oc(-ur a.t, the file syst.em level can be t.raced on a. per 1/O ageni, basis t.hrougll an opl.iolJa.l error
reporting t~a.t, ure t.ha.l, the user enables wil, h a.n environment variable.

In this paper, we illustrate how hint.s a.llow t.ailoring t, he use of’ l.he file syst, em t,o the applicat, ion needs,
t.hereby inlproving perl~ormance. We also show t.hat an ina.1)l)roprial,e use of l.he hint.s may degrade perfor-
ma.uee a.nd address the issue of how/,o describe hint.s t,o l, he users in a hmguage they cap, underst, and. Error
report, ing in collect.ave I/O ol~era.t, ions is deal.lied in order t,o illust, rat,e the rolmst.ness and user-friendliness of
MPI-IO/GPFS.

The pal)er is orga.nized as follows. In Seel.ion 2, we presenl, t, he hint,s and direel.ives which have been
prot, ot, yped in GPFS 1,o improve performance of pa.ra,llel ae(:ess I;o G FS files. Sect, ion 3 det, ails how da.t,a.
shipping is implemeut, ed in MPI-IO/GPFS It, also describes how GPFS hint, s a,nd direcl, ives a,re used by
MPI-IO/GPFS a,nd how error handling in collective I/O opera|,ions is impleuaenl,ed. Sect, iou 4 present, s
ped’ormanee measm’erneni.s t,o demonst.rat.e the benefit, o[’ using hint.s apl)rol)riat.ely and the 1)enali.y incurrecl
when hint.s a.re used inapl)ropria.t.ely. Sect.ion 5 present,s some (:onclusious and suggesl,s possible fui.ure
vesta.rob direct&ms for t, he MPI-IO/GPFS prot,ot, ype. All figures reR,renced in tale t, ext, a, re gat:!lered in t, he
A ppendix.

A pprova.I Dra, fi,

2 GPFS Hints and Directives

In t.he early st, ages of developing MPI-IO/GPFS, (,lie benefit, of having the underlying file syst, eln worl,: as
closely as possible wit.h t,he MPI-IO layer became clear. To t.his end, some experilnent, al opt.ions wit.hill (3PFS,
file I)art.il,ioning a.nd mull.iple access ra.nge hint.s, were exported for use by the M Pl-lO/({ PVS iml)lemeni.ai.ion.
This sect.ion descril)es t.hese i)rot.ot.ype fea.l;u res o1’ (; P

2.1 GPFS File Partitioning

Although file part,it.toning [Vesta] was init, ia.lly an experiment t.o improve the performa.l~ce of applicat.ions
tha.t show fine grained block sharing a.ccess pa.t,t, erns, MPI-IO/GPFS a.lso benefit,s f’ro,n reduced overhead in
the file part.it, toning mode.

File part, it.toning mode part.it.ions the file int, o a. number of large pieces a.nd alloca.t.es t.he responsil)ility
for reads and writ.es of each piece t.o a specific node. For example, blocks might, be assigned a.cross a. set, of
nodes in a round-robin fashiott, To part, it, ion a. file a.mong a. set, of ii nodes lmml)eved 0, l n- I, block
of a file is a.ssigned 1.o node number i rood n. Each node caches only t.hose file blocks t, hat, are assigned t.o
it.. rl’herefore, in (.his mode t.here is never any da.l,a shared between nodes so there is no need for dist.ribul,ed
locking, (,lie default locking mode of GPFS [Pai.en(.]. lnsi.ead, a. single shared lock on the file is issued t,o
each node responsible fbr da.t.a t.o fa.cilit.at.e recovery for failure ca.ses. Sha.red partit.ion locking eliminal,es
lock conflicts and grea.l.]y reduces t.he comp]exi(.y and size of t.he s(,a.t.e t.he lock manager maint.a.ins. When
in file parl.il.ioning mode, ({PF,q.’ ca.n also perfornl I/O operations more etficient.ly by issuing operal.ions of al,
leas(, one file block, usua.lly 2561(, t.he default, block size [’or GPES.

To ma.int.ain lhe consist.ency of" (,lie file syst.em dat.a, all nodes must. a.eeess a file using either dist.ribut.e(I
locking or file pa.rl, it.ioning, not bot.h at, the same t.ime. In our prot.otype, t, he (.wo modes, sha.red l)art.il.ion-
ing and disl.ribut.ecl locking are mut.ua.lly exclusive. However, sitlee dist.ributed locking is the defa.ul(., our
prot.ot.ype has a.n ext.erna.l int.erface so t.ha.t, applicai, ions ca.n request, and set. up file part.it.toning mode.

G t)I"S file pa.rt.it,ioning mode fit.s well with MPI-10/(’PFS dat, a shipping mode (see Section 3.1.1).
The MI¯I-IO/(IPleS layer knows when file part, il.ioning would be most. benefieia.l a.nd how to best map t.he
pa.rt.it.ioning. The MPI-IO/(IPFS layer requesl,s (3PFS tile pa.rt, it, ioning mode and sets up t.he pa.rt.il.ioning
paramet.ers t.al,:ing t.he burden off the user applieat.ion. When M PI-IO/(IPES clara, shipping and (~PF’S file
l)a.r(.it.ioning work l.oget.her, the a.pplica.tion benefi(.s froth lhe strengths of’ both services. MPI-IO/(~PFS
most. efficient, ly ship t.he da.t.a, from t,he reques(,ing nodes t.o t.he GPFS nodes respollsil)le for t.he da.t.a and

(~Pt"S can run more efficient.ly by a.lwa.ys issuing la.rge I/0 requests a.nd using shared pa.rt.it.ion locking.

l)’ile part.it.toning mode is toni.rolled t.hrough ext.erna.l interlaces t.o G PIES. In t.he prot.ot.ype, t.he int.erfaces
a.re called directives. This term is used inst.ead o[’ hint,s beca.use hinl.s by definition ea.n be ignored, whereas
directives cannot.. Once a.n applica.t.ion issues a. file par|.it.ioning direct.lye, GPFS execut, es t, he direct.ire and
ret, urns. If" an error occttrs or if (:~[FS is unable t.o complet, e the direct.ire, a+n error code is ret, urned.

There a, re t,iu’ee direct.ives for file pa.rt,it, ioning: st, a.rt,, decla.re a. server mapping, and stop. The st, art,
directive is a collective operation t.ha.t specifies an open file and t.he numl~er of’ tasks part, icipatittg in t, he file
pa.rt.it.ioning mode. Each t.ask that: issues a. st:art, directive is ea.lled a. client t,ask. By default, (IPFS will use
a. round robin block pa.rt, it, ioning, assigning one file block in t, urn- t.o each node from which a. st,a.rt, directive is
issued. IIsing t.he map directive overrides t.his behavior. The ma.p direct.lye specifies a. pa.rl.ii, ion size, a.nd t.he
list. of server nodes. ’Fhis a.llows users, or M PI-IO/C~PI~’S, t,o ta.ilor the file parti(.ioning 1,o t, heir a pplical.ion.
Server nodes can be resl>onsibh~ for a.ny number of eoni.iguous blocks a.nd ca.n also apl)ea.r a.ny number of
lames in t.he pa.rl.it,ioning. F’igure I shows two examples of file i)a.rtitioning with a. va.rying number of servers
a.nd wt, rying part.it.ion sizes¯

To t.erntilm.(,e file l)a.rl.it.ioning mode, a.I1 client, t.asks t, ha.t. issued a si, a.rt directive must. issue a. st.op
directive. ()nee all t, he st.op direct.ires ha.re been received by GPES, t, he file is t, aken out, of file part.it.toning
mode. If a. client, l.ask issues t.he close() syst, em call before t.he st.op direct.ire, close() will issue a non-blocldng
sl.op direct.ire on (.he I.asl<’s behaJf, however t.his is nol, recommended.

Approval DraFt

The greatest improvenmnt ill i)erfornm.nce was found when doing sniidl closely spa(ed writ,e operations
to one file from many nodes. In this case, we saw up to a,n 800% itnprovelllent in per[’ormam;e wheu using
[he file pa.rtitioning mode. ’[’here were gains seen in other patterns as well, t.hough not as drama.tic. The
following is a. brief synopsis of tests per[’ormcd with our prototype. For a.ll of the tests, an 8 node SP2 syst.enl
was used. Each uode had lOB of ma.in memory of which GPFS was given 40MB as a buffer ca.che. Ea.ch
node was a. VSI) server a.s well which served [’our 4GB disks to the one (I PFS file system. Thus, the (~
tile system which was mounted across all 8 nodes was 12~ GB. The file sizes used were a.ll 2GB.

Two sl.rided tests were perlbrmed for I)oth read and write. Stri(led is cle/ined as a.n opera.tion of a given
size repeated at. a regular interval in l,he file.

The first, test was a. filed si,rided pattern. With ’n nodes, mmflyered 0 lo n-I a.nd a.n operation size of ’m
byl,es, this pattern is; node i sta.rts at, oiliset i, m bytes, reads or wril.es ’m bytes, skips (n-/)*m bytes and
repeats the operai.ion. This pa.l.tern, with sma.ll records and a. small number of nodes, yields several requesl.s

’ ,’Sper (,PI, file block. Multiple opera.tions per block means data. ca.n lye found in the cache for rea.ds, but
results in fine gra.ined block sharing for writes. Note that even tiled strided reads with small records can lye
improved by using file pa.rtitioning. The benefit, is that each block of the file needs to be read only omze,
instead of once by each node. On the down side, the overhead of addii.iona.l messages and da.l.a, copies will
take back some of the perforlnance ga.in.

The second test was for a. spa.rse strided pa.ttern, q_’his time the strides were deliberately chosen so t, ha.t
no two consecutive opera.tions at. a. node were to the same G PFS file block. For example, with a record size
of 121";, the stride was defined a.s’24 , 12N. Note that the stride grows wil.h the number of nodes in the
first test. For larger node counts, nodes no longer do multiple operations per block, rea.ds do not find data
alrea.dy in cache and 1/O l)a.tt.erns begiu to look like those in the second test.

Not surprisingly, for access pa.tterns that exhibit a high degree of write/wril.e block sharing, file pa.rti-
tioning avoids a.ll token conlliets and shows t.he greatest lyerformance improvement. Figures 2 and :/ show
the result.s of these tests.

2.2 GPFS Multiple Access Range Hint

(I PFS recognizes sequentia.l file access lmtt.erns and issues l)refei,chs and write behinds to ma.xilnize through-
put [lutro]. However, some applications have access patt,erns that, are not sequent, tel or even regular. Yet the
a.pl)lication does know the pal.tern. This is often the case (br MI~I-I()/(~PFS. In the protot,ylyed GPFS,
added the nmltiple access ra.nge hint a.llowing an application to communicate to (IPFS its intended access
pati,ern, both which bk)cks will lye accessed soon a.nd which are no longer needed.

With bot.h sets of informa.t.ion, GPt"S can best. ma.nage it,s buffer cache a.nd provide progress on a
maxinmm of prefetches. Successlill prefetches enable GPFS to sa.t.is(~; upcoming requests directly from its
cache. When rtmning at, its best, the multiple access ra.nge hint can change the behavior of the application
from having l.o do tota.lly synchronous I/O opera.tions to tota.lly asynchronous I/O operat.ions. This cha.nges
the performance from the speed of the disk subsystem to the speed of the memory subsystem. Figures 4 a.nd
5 show the effects on GPFS’s ability to do prefetch with and without the multiple access ra.uge hil~t.Notiee
in figure 4 a.ll I/O is synchronous a.nd in tigure 5 a.ll I/O becomes asynchronous and the job is much faster.

The multiple access ra.nge hint takes two pa.rameters, an array of blocks tha.t will soon lye accessed and
a.n array of blocks that the application is [inished a.ccessing. There is a. ina.xilnum nulnber of blocks thai.
may lye given in one hint. Depending on {,he ctlrrellt Ioa.d, (aPFS may initiate pret>tching of some or all of
these blocks. Ea.ch block speci[ied in the prefer, oh list tha.t, is accepted for lyrefel,ching should eventua.lly lye
released via. a.[l identical entry in t, he finished list,, otherwise GPFS will rea.ch a. maximum number of cached
blocks for this file a.nd retilse a.ny more prefetch requests for it..

Two tests were done to show the benefits of the multiple access range hint, random reads and random
writes. Ilsing record sizes ranging from 4096 to 512Nbytes, the multiph~ access ra.nge hint a.llowed the test
a.pplica.tion to sl)eci[~’ its fi(t.ure accesses so that (il PIeS did prefet, ching even for this irregular access pa.t,t,ern.
[Jsing this hint raised the read rate by 67%. Running the random read test on only a. single node improw>d

Al>prova.l Draft

the perfornmnce by Iiiore tha.ll 500%. Random writ.es with the mult.il)le hlccess ra.nge hint iml)roved the rate
by Ig0%. The performance is not as high when using ma.ny nodes because tile test progra.m creates similar
random patl.erns which often cause conflicts for i>refetched I~locks. There will be no such conflicts when

MPI-IO/GPFS uses multiple access range hints.

A final t,esl, per[’ormed for random writes used both multiple access ra, nge hiilt, s a,lld file partitioning
which a llevia.ted a.ny write/write sha.ring. (’,ond3hdng the two opt, ions improved perfornlance by more tha.n
200%. Figure (i shows the results of |.hese tests.

3 MPI-IO/GPFS Features

This section first presents the features which enable MPI-IO/GPFS to achieve high performance with user
applications which can exhibit very distinct I/O patterns, Then, Datures of MPI-IO/GPFS which provide
robustness and user-frieudliness a, re deta, iled.

3.1 High Performance Features

This section describes the various high perlbrmance features of M fq-l()/G PFS. The tbunda.tion of t.he design
of MPI-10/GPI:S is the technique we call dat.a sfiipl~ing. The user may enable or disable this fea.tm’e on a.
per open file basis. Additional features allow the user to instruct MPI-IO/GPFS, oil a per open file basis, to
use C, PFS file partitioning or to guide, Oll behaJf of the appliea.tion, the prefetching of G PFS blocks. These
[’eatures a.re imlfiemented by M PI-I()/GPFS through the use of the G PFS directives and hints introduced
in Section 2. Fina.lly, we raise the genera.l issue of describing the purpose of a file hint in t.ernis which are
meaningful to t.he user, given that the relationship bet.ween MPI ca.lls to do 1/O a.nd the a.ctivity a.t the file
s),st.em level is complex and largely opaque t.o the MPI progra.mmer. The choice of a. mea.ningflll name and
\mlue f\)rmat for a. file hint. is challenging. ’[’tie name should be mnemonic and the set or ra.nge of va.lues
user seleets from should ha.ve a. recognizable relationship to the user’s mldersta.nding of her progranl’s l/O
behavior.

3.1.1 Data ShlpI)ing

’Fo prevent concurrent a.ecess of G PFS file blocks by nmltiple tasks, normally residing on sepa.ra.te nodes,
MPI-IO/GPFS uses data. shipping. This technique binds each GPFS file block to a. single 1/O agent, which
will be responsible for all accesses to this block. For write operations, each task distributes the da.ta to

be written to the I/O agents according to a binding scheme of GPFS blocks to I/O agents. I/O agents in
turn issue the write calls to GPFS. For reads, l.he I/O agents read the file first, and ship i.fie data. read to
the a.I)propriate tasks. The binding scheine ilnplemented byMPI-IO/GPFS consists in assigning the GPFS
blocks t,o a, set, of I/O agents according to a round-robin striping, ilhlsl, ra.ted in Figure 7. 1/O agents are
multi-threaded a.nd are also responsible for combining da.ta a.ecess requests isstied by all participating tasks
in collective da.ta access operat:ions.

Oil a per file ha.sis, t;lle user ca.n define tile st, ripe size used in the allocation o[’ GPFS blocks to I/O
agent, s. The stripe size is the vahle of file hint IBMJo_buffer_size, whMl can])e specified when the file is
opened, or when the MPI_FILE_SET_INFO and MPI_FILE_SET_VIEW functions are caJled. It is possible 1,o
change the stripe size of an opened file a.s long as no 1/O operation is pending on 1,he file. The st, ripe size a.lso
controls the a.mount of buffer space used by each l/O agenl, in data access operations, justifying its name.
The stripe size given by the user is rounded up by MPI-IO/GPFS to a.n integra.l llllill])ei’ o[" GPI:S blocks,
a.nd its default size is the lllli/l])er of bytes contained in 16 GPFS blocks. GPFS block size defa.uli, s t.o 2561{
unless set. I)y a system a.dn~inis(.ral;or when GPF,q is configured.

FinaJly, eli a. per file basis, the tiser ca.ll enal)le or disable M PI-IO dal,a shil)l)ing by set.ring file hint
IBM_largeblock_io 1.o "false" or "true", resl)eclively. MPI data. shipl)ing is ena.bled I)3: default. When it.

A pprova.I I)ra.fl.

disabled, l.a.sks issue rea.d/writ.e calls t,o GPFS direcl.ly. This saves t.he i"osi, o1" MPI-IO da./.a, shipl)ing but
risks GI~FS block t)ing-pongh/g among nodes if lasl<s Ioea.l.ed on disi.inet nodes toni.end for (,P[S blocks
rea.d-wril.e or writ.<’-wril.~, ,,:ha, ring mode. In a.ddil.ion, coll<’cl.ive dat.a, access ol)era.l.ions are done hMel)endenl.ly.

Therefore, we rec<)nlmend Co disable da./.a, shipt)ing on a file only when a.cc<~sses to the file arc ped’ormed
la.rge chunks or whel~ l,asks access disioint, la.rge regions of !,he /il+’. tn such cases, M I)1-10 coMeschig of the
I/O i:eqnesl;s of a. collecl.ive da.l.a access el)era+ion ca.nnol, l)rovi(le I)enefil. a.nd GPF,q block conl,enl, ion is
a. eolJeerll.

3.1.2 GPFS File Partitioning

GPFS file pal’(,itioning is a.ct, ivatcd in MPI-IO/GPI"S on a per tile basis when a file is opened in
MPI_MODE_UNIQUE_OP[Ikl mode a.nd file hinl, IBM_largeblock_io is nol, sel, or is sel. 1.o "false". The
IBM_largeblockSo wl.hie suggest, s l.hal. MPI-IO dat, a. shipph~g mode, as described hi Secl,ion 3.1,1, is t.o be
ena])led Oil l~he file. MPI_MODE_UIklIQUE_OP[N l)roinises l.here will be lie other COllCill*l’elll. a.ecesses t,o the file
so GPFS disl.ribui:ed locking is nol, requil’ed. There a.re l,v¢o relevant, asl)ecl.s l,o (II:>PS file part, ii, ioning. The

t i~-tbenefit, is l.hal, t, okens only need l.o I)e acquired ollee (a|, t.he i.ime (,Pl S file part.il.ioning is sl.a.rt.ed I)y MPI-
IO/G I:>FS) by each I/O agent, for i,h<~ (JPli’S blocl~s ii. is responsible for. Tokens will nol, be revoked unl.il t.he
file is closed or lii’d.il t, he liSCT eha.nges t.he I/O buff’or size by sl)ecil)s’ing a iiew va.hle for ill<" hinl. IBM_io_buffer_size.
7Vhen sl, a.rl.hig or resl.a.rt.hig (~’PF~ file pa.rl.it.ionhig, MPI-IO/GPF$ s~’i.s a. (]Pl:~ file i)arl, il~ioning map
ma.t.eh l,he MPI-IO/GPFS sl,riphig of GPFS blocks a.cross i.he I/O agenl,s. The pol,enl, iM cost of GPFS file
part.il:ionhig mode is i.ha.i, when ally node of, her l.han the oiio granl,ed righi:s by the GPFS file part.it.ioning
ina.p l.ries i.o ace<~ss a. I)lock, GPFS musl, ship l.he da.i,a, t7.$, combhihig M PI-IO da.t,a shipping wii.h i.his GPFS
mode, we gain the t.oken Illa.llt’/<~elllelil. I)eliefit. and never re(itlire G I>t:S t,o do any dat.a slfil)phig. (IPt:~
i)a.rt.ii.ioning will niosl. I)enefil. a l)plieal.ions which wril,e several mna.II dat.a recor(ls oul. of each GPF,%.’ block
l.hey access.

3.1.3 Guided Prefetching of GPFS Blocks

The use o[" MPl_Oatatypes 1,o define a file view i-ileans (,hal, a single MPI-IO call t,o read or wrii,e data lna.v
implicil.ly represenl. :4 series of file 1/O Ol)eral.ions. ’[’lie [till series is known 1.o I.he M PI library betbre l.tie
firsl, file opera.l.ion. M PI-IO/G PFS caJi cxt)loii, i,his "a.dvalwo" knowledge by ushig l,he (II:>FS nmlt,iph’ access
ra.llge ifinl.. M PI-10/(IPFS ca.il guide i.he i)refel.ehing of (]IJFS blocks wlwn dat.a, shipl)ing niode is enabled
O11 all opelied life. Ea.eh t.ilne a.ll lie a.gelil, dal.a access is i.o OCCIII’, MPI-IO/GPI:S allalyT, l?s l, he pal;l, ern el
I/O l’eqtlesl.s t.[le a~elii, ha.s beeil given. If’ l.he l)al.t.el’n eollt.a.ins a singh, byte l’a.n~e oF a. suco’essioll o[’ I)yt.e
raiiges which al)pea.r 1.o rei)resellf_, a regular si, rided pa.l,l.ern, M PI will allow (~PFS t,o liia.l(e its OWii pre[’et.ching
decisions I)eea.use sequent.ia.t and st,tided a.ccess l)a.t.l,erlls a.re quickly re(’oglliZed a.l/d elficient.ly ha.ndlecl
GPFS. In ot, her eases, MI l-IO/(,l t S will comt)ut.e [’or ea.eh (4PFS block t.he lower aim upper bounds of
byi,e range which covers all t, he byte l’a.ilges [,o be accessed wii.hin t.hal. GP["S block. This builds a list, one
byt, e ra.nge per (IPF8 block, of’ l’a.ilges [.o be accessed. Then> if. will a.pply l,he fbllowing prefT~t, ehing polh:y,
asstliTling #lla;C_l;,rc rel)l’esents the nla.xinlllnl lllllilber of GPFS blocks t.ha.l, can be l)refet.ched a.i. ollee (a. limii.
set by GPFS):

[.

2.

At. i.he begilming of the dal;a, access opera.lion, (~ P FS t.ries t.o prefetel’l ma.c_pr~ byt.e ra.riges or a.ll I)yt.e
ra.nges MI~’I-I()/GI~FS has t,o access (if l,he l,ol.a.I nulnber o[" byt,e ranges it, has 1,o a.ceess is less l.ha.n
ma~c4.’,’).

(;PI"S inl()rnis M I’I-IO/(JI:~FS of]lOW lna.ny GPI:S blocks, aclual_pre’, were succ:essfully prefi~t.ched. If
t, he i.ot, M lltllilber o[" prefet.ched blocks is zero, MI~I-I()/GPI:S a c’<’esses oil<’ byi.e I’allge+ Oi, herwise, it.
accesses tim niiiliinllm o[’ (l(’[,U(ll_])7"C a.nd mam_a(c byl:e ra.liges, where ma:~.’_acc rel)resenl,s t, he nla.xiinum
lltllllber o[byl.e l’allges which Ca,ll be accf’ssed a,i, Ollee (for experilnelll,at, ion wit.h l.he prol.ol.ype, this

nlinlber is controlled by a.n environlllent, variable and ca.n ha.ve a.ny value I)et.weeli one a.nd ma;i:_prc).

3. Then, MPI-IO/GPFS releases the byte ra.nges it. jusl. a.ccessed a.rid tries 1.o l)refeteh as llia.ll.$: (IPFS

A Dl)rova] Draft,

blocks which have not, been either accessed or prefet,ched in ordel:’l,o get, mam_/~rc l)refet,ched b lo<:ks,
unless l.here are less I.ha.ll ma:t.’_lrrr })yLe ra.nges remaining 1,o })e accessed.

4. M I)I-I()/C; PI"S il.era.l,es sl.ol)S ’2. a.n(I :~. mlt, il a.ll I)yt, e ra.nges ha.ve been accessed.

3.1.4 Fil(~ Hint Expressiveness

In Sect, ions :]. I. 1, .3.1.2, aud 3.1.3, the rea.(Icr ca.n observe how M PI-IO/G PFS exposes its high pet’[brnlance
fea.t, ures 1.o l, he user. To conl.rol (la.l,a shipping, the user ca.n use two tile hints which a.re ca.lled IBM_largeblockJo
and IBM_io_buffer_size. These hinl.s do not refer directAy t.o MPI-IO/C~PFS’s da.t,a, shipping mode. lnst, ea.d l.he
user expresses the genera.l 1/O pal;t.ern of her a.1)l)lica.l, ion on a. per file basis a.nd how much buffer sl)a.ce
should I)e made a.vaila.I)le l,o MI:H-IO/GI~FS t.o process each dat.a, access ol)era.t, ion. ’I’o control GPI’~S file
l)al’t.it.ioning, the user does not exl)licit, ly ena.ble or disa.I)le it. by ca.lling l.he GPFS l)rogra.mnlhlg interface
wlfich a.llows sen(ling 1.o (IPFS t, he appropriate file part.it, ioning dh’ecl, ives. Instead, MPI-IO/GPleS does
il. t.ransl)a.rently I,o l.he user if l, he user ha.s set. the MPI_MODE_UNIQUE_OPEN mode when opening t, he file.
The MI)I st.anda.rd provides MPI_MODE_UNIQUE_OPEN so the user ca.n declare a case in which the MPI-IO
implenlent, aLion ma.y be able l.o pertbrm a.d(lit.iona.1 opLimiza.t, ions. Beca.use file 1)a.rt, itioning is va.lua.})le
ca.nnof lye used on sha.red files, the ill. is quite nea.t,. F’inally, MPI-IO/(_4PFS cont.rols, l,ra.nspa.reni.ly to the
user, the prefel.ehing of GPFS I)locks when dal.a shil)ping is enal)led on a file. The user is not. awa.re of t,
fael. t.hat M PI-IO/(4 PFS somel.imes uses t, he (,PI S nmlt, iple access range hint. under lhe town" t,o ol)l,ilnize

dal,a, a.ecess ol)era.l.ions.

To sunllnarize, file hints <:air either be explieil.ly l)rovided 173, t.he user or deduced by t, he MPI-10 hnl)le-
Ineut.a.t, ion on I)eha.lf of l.he user. In l.he former ca.se, hint names should have meaning which applies t.o the
user’s underst.an(ling of her a.i)plical.ion ral,her t.han to iml)lemenl.a.t.ion del.a.ils of high performance feal,
l.he hinl. t.riggers. In the la.l,l.er ease, l.he user is nor even a.wa.re l.ha.t, file hint.s axe being used on her beha.lt’.
The iml)h~n~enl.al.ion t,riggers t.he file hinl. only when it, est, ima.l.es t.i~e hint. would benefit, l,he a.I)l)lical.ion,
ma.y restrict, l.he use of t.he file hint. t.o sl)eeific condit, ions cent, rolled by user specified hint, s (eg t.hc’ (~ 1 1:
mull, il)le access range hint. is only used I)y MPI-I()/CIPIeS when file hint. IBM_largeblock_io is not, set, or sei.
(,o "false"). The MPI_FII_E_GET_INFO f’unet.ion allows lhe user t.o discover the hint.s i.ha.t, ha.re been de[’aulLed,
a.e(:el)l.e(I, or rcjeet,e(I for a. given file.

3.2 Robust Error Reporting Capability

(’,eH.ain ext.ensions 1.o t.he I)ase [’unct.ionalit.y of M Pl-lO were added t.o M PI-IO/(IPFS, in SUl)l)orL of I)ot,
error (let.ect.ion, recovery and debugging. ’l’hese additions fall into t, wo broad ca.tegories, collective conl.lllu|/i-
cation rol)usl.ness and M Pl-lO specific tracing. The addition of M PI-IO t.o the MPI st,anda.rd alt, ers the model
of MPI programs. In the MPI-1 sl.anda.rd, t, here were, pra.ctically speaking, no MPI COlmTnlll_iea.(.ion ea.lls t.he
user could exl)ect, l.o recover (?ore. ’The defa.ult, for MPI errors was t,o abort 1;b_e job and MPI-I programs

/.end not. t.o check return co(les. [lnlike with communica.t, io,~ errors, it, is reasonable to expect a. program
wit,h a. fa.iling I/O Ol)era.i,ion t.o recover and continue. Ca.re should })e taken in a.n MPI-IO iml)lement.a.t, ion
prevenl, errors on one t.a.sk causing ha.rigs on of, her tasks. The enhancement, s t,o t, he collect.lye opera.t, ions a.llow
I)et.ter progra.m error recovery, while l, he t.ra.eing functions a.llow a. l)rogrananmr more det, a.iled informa.l, ion for
error det, ermina.l, ion.

3.2.1 Colle(:t, ive COlnm,mieat, ion enhancements in MPI-IO/GPFS

In M PI-10, l, hore a.re errors t,ha.t, a reasonable a.I)l)lica.l,ion would exl)ecl, t.o dea.l wit,h, ¢~.g., a.n inva.lid l)a.t:h
name on an MPI_FILE_OPEN ca.I1 or a writ.e ol)erat.ion l.o a. rea.d-only tile sysl.em. A rol)usl, iml)lenmnt.a.l.ion

M PI-IO should a.llow a.n error l.o occur on one or more tasks yel, a.llow (.lie progra.m a.s a. whole t,o (:onLinue
t,o run wil.houl, ha.ngs or unexl)eel.e(I resulgs.

Many of t.he M PI-IO calls are collecl, ive, which lea.ds 1.o i.hree disl, incl, kinds of errors:

A I)l)roval I)rafl,

¯ Tim underlying I/O fails.

¯ (k)llect.ive call argmneni,s arc inconsisl,en[, or inva.li<l.

¯ C, ommunicai, ion errors.

(/,omnmnhea.l,ion errors rcma.itl fa.t, al wit, h no user recovery, l"ort, tlna{,ely, such errors are rare. The el,her
l, wo classes of errors ma.y be I/a.ndled by users.

On any M I>I <:all, a.rguinenl,s are locally checked for validii, y. When l, he call is a.n M I>I-IO <:ollecl,ive
one, M1)l-l()/G I>l+S is designed so (ha.t, no ca.ller wi~,h a.~ inva.lid a,rgument, will tel, urn from i, he call unt, il all
t, he other t, asks in I;he file handle group have been not, ified i, ha.i, t, here has been a.n error. If a.ny [,ask were
to rei~urn immedia.i,ely a:ft, er det, cct, ing a.n a.rgmnent, error, wit, hour, l)a.rticil)a.i, ing in t, he collect, ire portion
t.he MPI-IO opera.l,ion while t.he el.her t, asks went, tk)rward, the or, her tasks of t.he file ha.ndle group would
hang. This hang is prevent.ed by st.orang t, he result of local argument, va.lidit, y check in a va.riable and doing
a.n allreduce operat, ion on it,. The collective I/O operat.ion proceeds only when it, is known a.t all l.asks t.hat,
each l.ask has been called and has valid argmnenl,s.

Mosl, of t, he <:olleci.ive MPI-IO calls have some argument, s which must, be ident.ica.l across all of t.he t.asks
in 1.he file handle group. For pert’ormarnce reasons, it. is desira.blc t.o avoid t, he overhead of consi,st.ency checking
Jbr each I/O <::all in a. working program. On [.he or, her ha.rid, consistency errors may lead i.o subtle problems
which are nor easily t.raceal)le. Wit, bin bol,h collect.ire communication and collecl.ive opera.t, ions perfornled
on beha.lf of MPI-IO operal.ions, an environnieni, va.rial~le, MP_I!][IIDEVEI:OI ~ is provided [br ex[,ended
consist, ency checking. When develol> mode is l.urned on by sel.l.ing M I:’_EIIIDEVF, I, OP=I)EVEI,OI:~, each
a.rguuient, t, hat, must, be ident:ical across ;tll callers is verified in t, he following manner.

* An a.rray is filled wit, h all of t, he a.rgum<,ni,s which musi. I>e checl<ed for consist.eric,y.

¯ This a.rray is senl. i,o I, he lefi. neighl)or and r<-ceived from l.he right, neighbor. Task 0 sends t.o l.asl,: p-l,
p being t, he mmd)er of l.asks in the file ha.ndle group.

¯ Ea.ch elemem, of {,he received array is <:ompa.red t,o each element, o1" t, he sent, ,s./i’l’,hy. All error tlag is set,
when any mismatch is found.

¯ MPl~llreduce is called wil.h t.he error Nag as input, t.o inform all l.asks whet.her t.here was a neighbor 1,o
neighbor in<:onsist.ency b<,l.ween any pa.ir of t.asks.

An obvious Ol)t, imiza{,ion is to <:oml~ine l, he reducl.ion opera.l, ions for develop mode consist.ency checking
and regular validit,y checking int,o a. single operat, ion. This a.llows the consist,they checking t,o be done a.i, an
incremenl,a.l cosl, of a single MPl_Sendrecv operat.ion.

3.2.2 MPI-IO/GPFS tracing

Sitice a. dai, a a.ccess operation may involve severa.l I/0 agents which might, all encount, er an error wheu
a.ccessing (:P[S, M PI-IO/(];PFS had t,o, as a qua.Ilk’>’ of inq)lement, at.ion ma.t,ter, find a wa.y t,o report, a.II
occurring errors at /,he file syst, eni level. Unfort.unat.ely, only one error code can I)e rei, urned by an MPI-IO
hulct.ion call. Therefore, we defined a. t, ra<:iug s<:hen~e tha.t, would allow users l.o have access t,o all errors

which occurred on any I/0 agent, during [.heir al)l)lical,ion run.

~Ik) enal)le MPI-IO/(3PFS I.racing, [he user set.s a.n environln<’nt, variable select.ing eli.her of t, wo modes.
In one mode, only errors which occur dm’ing t.he apl)lica.t.ion mm ;ire repori.ed, in t.he el.her rood0, along
wil.h error l.racing, a.II read/writ.e ea.lls [.o (-II)I"S a.re reporl.ed wil.h t.heir ret..urn codes and I.he i)a.ra.nlel.ers
passed i,o t,110 calls. In t, he la.l,l,er niode, l, he user can opi, ioually set a second elivirollinenl, va.riable l,o limit, l, he
read/wril,e o])era.{,ion t, racing 1,o ol)era.l, ions perforiiled a.I)ove a sl)ecific file oflisei,. By d<’fau]t,, t,l/e rea.d/wril;e
opera.i, ion (,ra.chlg st,,a.rl,s a£ o[I’,qel, zero. [;l’l’O’l’ records and read/writ, e recorcls a.re sl.ored ill Olle file per job
l.ask, in direcl.ory /trap Oil ea.ch node. ’;[’lie file Ilallliiig (K)ilvonl.ion OilSllres ilifOrilial.ion])erl.a.iiiillg l;o file
a,genl, a,i, ca,ell l,a,sk will be wril, l,en t;o a separa.t,e file.

A pprova.l I)raft

4 Performance Measurements

]’his section presents in detail l.he exl~eriment.ation that we carried oul. on one of i.he three 468 quad-I)rocessor
node AS(’.I Blue Pacific systems a.t. l,a.wrence l,iwn’more Na.tiona.[Labora.tory and on an 8 node SP system
at. the IBM tlcsea, reh C.enter in Yorktown Heights. First., ea,ch benchmark is described, Then, for each
I)enchma.rk, the platform used [br the experinmnt.a.tion is presented, and the experimentation l)aramet.ers
and results are detailed. Graphs showing actual bandwidt.hs a.re provided to delnonstra.t.e the benefit of
t.he MIq-I()/(~PI,’S high per[brmance fea.tures int.roduced in See!ion 3. l. The first, t.wo benchma.rks, run
l,ivermore, used M Iq-I()/GI~Ii’S on top of (]PI"S 1.2 which does not include the prototyl)ed enha.ncemellts
discussed in Section 3.1.1. The second two were run with MPL10/GPFS on top of the prot.ot.ype version of
CPFS on a much sma.ller machine inside IBM.

4.1 Benchmark Description

Let .s first describe the four benchmarks used in our experinlent.ation. Each is aimed at eva hm.t,ing 1,he

benefit of the high performance Datures of M PI-IO/G PFS for a. pa.rt.ieula.r class of a.pplication I/O patterns.
For a.ll tests, l.he metric is rea.d or write ba.ndwidth expressed as Mb/second for the job as a whole. The
benchmarks will run with any nulnber of tasks a.nd provide every task wit.h t.he same a.lnount of 1/O to do.

In our tests, t.he file size sea.les with the number of tasks. To provide a consistent, a.pproaeh to measurement,
in ea.eh benchmark, MPl_Barrier is called belbre begimnug (.he t.imiug, making each task’s first, ca.ll t.o t.he MPI
read or write rout.the well synchronized. In MPI semant.ic, the return fi’om an MP1 write operatiol~ does not.
guarantee that da.t.a, has been conmfit.t,ed t.o disk. q_k) ensure that t.he entire writ,e time is co,mt.ed, each test
does an MPl_File_sync a.nd MPl_Barrier before taking the end time stamp. In noncollect.ive l/O it. is possible
t.hat, some t.a.sks do I/O thst.er tha.n others and a.n argument could be made tbr a.veraging t.he times. The
synchroniza.tions ensure, in both collective and llOncollective tests, we measure job time which we consider
most mea.ningfu].

4.1.1 Contiguous Benchlnark

In the cont.iguo,s belmhma.rk, each t.a.sk reads or writ.es sequentially a block of data from/to a. single con-
tiguous region of a preexisting file. Region size, tyl)e of file access (read or write), and t.ype of l/0 ol)eratioll
(collective or nom:ollect,ive) a.l’e pa.ramet.ers l.o the benehma.rk program. The nun~ber of tasks in the par-
Mid .lob together with l he region size determine the size of the file tha.t is accessed, l, lse of either t.he
{BM_largeblock_io or t.he IBM_io_buffer_size file hint. is cont.rolled with enviromnent variable settings.

The progra.m uses the MPIMODE_UNIQUE_OPEN tile mode when opening the file. Since the da.ta, pa.t.tern
consists of eont.iguons pieces of data., the benchma.rk does not use MPl_Datatypes t.o crea.te a. ma.pped view of
the file; instead each t.ask ca.lcula.t.es t.he oti~et a.t which t.o a.ccess the file, based on it.s task number and the
region size. Measurement. is over the following sequence of steps which occur on each t,ask:

¯ rea d/writ, e the data buflbr to/from the t, ask’s assigned region of t, he file

¯ ca.ll MPl_File_sync

¯ call MPl_Barrier

and the result is expressed in megabytes per second tbr the job.

4.1.2 Discontiguous Benchmark

In the discout.iguous benchmark, em~h t,ask reads or writ.es a.n equal number o(’ [02d-byte blocks, where
the set of blocks that any one task rea.ds or writes is sca.ttered randomly across the entire riD. Working

A pprowd l)raFt

together, the ta.sks tile I.he entire file without holes or overlap. In the ca.s(i’o[’ writes, the benchma.rk pr(!gra.m
creates the file. Pa.rameters control file size, type o[’ file access (read or write), type o[" l/O opera.i.i(.m
(collective or noncollective). 131wiromne.t variables may be set to go\;erll the use of the IBM_largeblockio
the IBM_to_buffer_size file hints, and l.o indica.te whether MPl_File_preallocate should be used to prealloea.te spa.ee
for the new file in the case of writes. This t:)em:hmark opens the file with mode MPI_MODE_UNIQUE_OPEN,
to indicate tha.t no other user will simultaneously access the file.

The I)enehmark program reads or writes l.he file region by region, using a two gigabyte region size. Each
l.ask is assigned some set el’ 1024-byte blocks t.o read or write in each region, and creates a.n MPl_Datatype

to ma.p those blocks into their proper locations in the eurrenl, region. This is accoml)lished lay passing the
MPl_Datatype tha.t maps the blocks as the Iiletype argument to MPl_File~set_view. A two gigabyte region size

is used I)eca.use it. is the largest region possible with a. 32-bit M PI library. The spa.n of addresses that can be
mapped with an MPl_Datatype is eonstra.ined by the size of an MPIAint variable, so a, 32-bit M PI ma.ndates

a, maximum region size of two giga, byt, es.

Since the tasks read or write cliff’rent pa.ttel’llS of lalocks at each iteration, the list of block a.ssignments
is inspected before ea.ch read or write, to determine the range a.nd position of the blocks in the current region
and to crea.t,e the associat.ed filetype. Measurement is over t.he following sequence of steps which occur at.
each task:

¯ loop on the numl)er of two-gigabyte regions in the file:

- scan the list, of block assigmnent.s [’or blocks belonging to the current region

crea.te the fitetype [br the ClllTC’llt region

set. the currellt file view

read/write the assigned blocks (collectively or llOncolleet.ively)

¯ end loop

¯ call MPl_File~sync

¯ call MPl_Barrier

and the result is expressed in megabytes per second for the.jol).

4.1.3 GPFS File Partitioning Benchntark

’I’his benchmark measures the benefit of using GPFS file partitioning with MPI-IO/C, PFS. Ea.ch task reads or
writes the sa.me small number o1’ non-ovel’lapl)ing noncontiguous data blocks from/to the file. The benchlna.rl¢
loops on the data a.ceess operation. Starting addresses of all blocks a.re generated ra.ndomly across the file
and sea.ttered among tasks. To simplify observations of how GPFS file partitioning affects I/0 performa.nce,
only noncollective da.ta access operations axe used in this benchma.rk.

’Fhe size of each block and the tota.1 number of blocks is specified by t.wo benchma.rk parameters, so
tha.t scope and amount of GPFS file pa.rtitioning can be controlled precisely. Another parameter specifies
whether to use (~1- t~$ file laartitio,ling. Note that if the IBM_largeblock_io hint is set to true this paramei.er
will be ignored and da.ta, will be a.ccessed without using (’,PFS fib- pa.rtil.ioning.

By compa.ring the I)au(Iwidths obtained with G1)I,’S file pa.rtitioniug enal)led (mode
MPI_MODE_UNIQUE_OPEN set when the file is open) with those obta.ined with file partitioning disabled (mode
MPI_MODE_UNIQUE_OPEN not, set), on various ntmdaers of tasks, for read and write ol)erations separately,
we can ewdua.te the performa.nee improvelnent resulting from the use o[’ G I~FS file l:,a.rtitioning.

A pprova, I Draft

4.1.4 MultiI)h~ A(:cess Range Benclnnark

This benchmarl¢ measures t.he benefit of using I.he (;PI"S nmlt, iple a.ccess range hint. within MPI IO/(7~I)FS.
This benefit, stl’ongly depends on l.he al)l)lica.t, ion I/O pa.tl,ern, on the stra.l,egy M PI-I()/GPFS a.I)l)lies
preliq.ch/release (~l)l"S bk~d~s, aud on l.he acl.ions GPFS (,akes in response l.o l.he number of blocks MPI-

10/(TIPFS asks it (.o pi’eDi.ch or release. By va.rying t.lle da.ta access l)a.ra.uiel.ers, such as (.he (,el.a] a.lnouut.
of dai.a I,o be a.ccessed, t, he a.ll]O/lllt, ot" data t.o be a.ccessed in ea.ch read/wrii,e Ol:)erat.ion, the dist.ril)ut.ion
l.he dal.a 1.o l)e a.c(:essed oni,o l.lie file as welt as anlong the (,asks, t.he I/O buft>r size used by ea.eh I/O a.gelll.,
and the sl.ral,egy MI)I-IO/(~PFS a.pplies for prefel.ching/releasing (~PFS blocks, (,his benchmark can collect
baudwidth iuforma, l.iou [.Or va, rious iul.era(:t, ious of l,hese [’acl,ors.

In l.his bellchnla.rk, each task rea.ds or wl’ites a mmd~er of uon-overla.pping GPFS blocks from/l;o l.he
file. (3PFS blocks a.re randomly assigned to l.asks. Only sub-blocks sca.t,t.ered l.hroughoul, each GPFS block

are read/wril.l.m~. The mm~l)er of’ GPFS blocks t.o I)e accessed, (,he munber of sub-blocks to rea.d/writ.l,en
within each (4PFS block, as well as l.he size o[’ a. sul)-I)lock a.re adjusl,able. An environment va.riable provides
cont,rol ot" (,he number of])locks M PI-IO/(~Pt"S l.ries t,o access before prefer, thing new GPFS blocks a.nd
releasing (.he (~PI"S blocks.just, accessed. A va.lue of zero for this environment, variable disables the use of the
(,1 F S mull,(pie a.ccess range hint.. MPI derived da.t,at.ypes a.re used t,o descril.)e t.he la.yout, o1" the sub-blocl~s
to be a.ccessed within ea.ch (.]P[,’N block.

As in (.he discont, iguous benchma.rk, (.he const.ruction of the filetype used for setting t.he file view for
specific da.ta layout {c’onl, l’Olled by (,he number of sub-blocks per GPFS block and i;fieir size) is included
the timing inl,erva.l. C, ornparison o[’ resulting 1)tmdwidl,hs [’or wu:ious numbers of tasks allows t.o evalua.l.e l..he
iml)nct, of l.he pre[’el.(:hing policy ena.bled by MPI-IO/GPFS (.hrough the use of l.he (I~I:)FS multiple a.ccess
range hint.

4.2 Benchmark Results

’|’his sect.ion presenl.s, for each benchma.rk, l.he hardware l)la.l.fSrm and versions of l.h(" key soft, ware eompo-
nenl,s used in our exl)erimenl.a.l.ion. The performa.nce da.l.a is presenl.ed in graphs, in the appendix a.i.l.he end
of t, he paper, 1,o facilii.a.te the compa.risoll of the aggrega.l.ed ba.ndwidl.hs obl.a.ined wil.h or wit.houl, use of l,he
high performa.nce feal.ures described in Scc(,ion 3.1.

Sections d.2.1 a.nd 4.2.2 a.re based on performance mea.suremellt.s perlbrmed on IBM SP syst.ems (,hal.
axe pa.rt, of l.h(" ASCI I~lue Pa.cific complex al. l,a.wrence Livermore Nal.iona.t Labora.tory [AS(:I99]. Sections
4.2.;1 and 4.2.4 are based on perfornmnce measurement.s perlbrmed on an 8 node system a.(. the IBM T.,I.
Wa.tson [{esea.rch Cent.er.

The ASC[Blue Pacil’ic sysl.erns a.re based on 4-way nodes ut.ilizing aa2 Mhz 604e Power2 processot;s.
Each of l.he nodes has 1.5 Gb of memory. The pa.rl.icula.r sysl.em hosting the exl~eriment.a.t.ion includes 425
comput.e nodes and 56 I/O nodes. The GPI:S configura.tion includes 38 VSD servers. (IPFS page pools
occupy ,r)0 MB on ea.ch compul.e node. The sofl.wa.re configura.l.ion includes A1X 4.3.2+, PSSP 3.1 a.nd G PFS
1.2. A more deta.iled descript, ion of (,he file system configura.tion and CPFS performa.nce sta.l.istics can be

found elsewhere [aon00].

While il, is prefera.ble I.o make performa.nce measuremenl.s on a dedical.ed sysl.em, ea.ch of l.he ASCI
Blue systems is so hea.vily used that, this is not possible. Thus, these lnea.suremenl,s were carried out, on
l.he system in norlna.I l)rodu(:l, ion operat,ion. Despite 1.his normal workloa.d, eft’ort, s were made l,o ma.ke t,he
mca.surenmllts a.l, t.imes when other jobs were not contending for (,he GPFS file sysi.em. The peak pertbl’mam;e
on (.he contiguous benchma.rk with da.t.a, shipl)ing could be somewhat higher tha.n our numbers, since it,
a.fi>ct, ed by swit.ch l.ra:ilk’ a.nd we are nol. in a. dedica.l.ed (~nvironmenl.. The pea.k l)eribrma.nce we reporl, for
no dal,a shipping is unlikely t.o change in a. dedica.t,(~d ellvironment, beta.use our results a.re very reproducible.
In order 1.o obl.a.in a.n esl;ima.tie of l.he peal¢ i)erformance of l.he file sysl.em, we ra.n ea.ch of our experiments
several times and l,hen reporl, the highesl, va.h|e as lisl;ed in the l,ables below. We a.lso use l, he data. obl.a.ined
from sew~ra.l replica.(,ions of the same runs ill order go ewdua.te t.he impa.ct o[’ COll(.enl.ion oll (,he measuremenI.

10

A pl)rova.l I) raJ’I.

resulls.

Thecont.iguous a.nd diseonl.iguous benchma.rks were run oil,l, 8, 16, 42, 64, and 128 MPI l.asks. Each
M Pl task ha.d a.n ent.ire node of I.he ma.chine dedica.l.ed I.o it.. Measurements I’or M PI-IO/(IPFS are compared
t.o the same I.est.s using t.he R.OMIO (M PICH) iml)lementa.1.io. [ThaI~’99], [Tha.M99], a.nd t.o a.nalogous tests
utilizing a I.radil.iona.I POSIX I/O interface. By a.nalogous, we mean I.ha.I. the POSIX I.esl.s use I.he same da.l.a
Ia.youl.s (across t.a.sk memory and in I.he file) as the MPI-IO t.ests.

For a.II of l.he MPI-IO/(IPI:S measurements and for I.he POSIX version of i~he contiguous l)eIlchmark,
I/O I)a.ndwidt, h wa.s measured for seven rel)liea.I.ions of I.he sa.me experhnenI.. For t.he POSIX version
l.he disconI.iguous benchma.rk, lhe maximmn aehiew’d I/O ba.ndwidths (< 10 MBlsec) made mulI.iple mea.-
suremenl,s I)rohibil.iw ~. In I.his case, a single rel)lh:m.l.km el" ea.ch 0×i)eri,nenl. was performed. The ma.ximum
measured aggrega.l.ed I/O bandwidl.h is report.ed for each coml)ina.l, ion of I)enehma.rI,:, read or wril.e operal.ion,
MPI-IO hnplemeni, a.i.ion, and number of tasks.

4.2.1 Contiguous Benchmm’k

For the contiguous I)el~ehma.rk (sect.ion 4.1.1) a. region size of 333 Mill was used. l?ach MPI task wrot,e
single region. In l.his sil, uat, ion, noneolled.ive opera.l.ions give t.he best per[’ornmnce. The dal, a ira.ns[>rs are
indel)endenl, and can proceed in pa.ra.llel wil.h no coordinat, ion.

To illust.ra.l.e I.he effect of using M Pl da.l.a shil)l)illg (eonl.rolled by I.he IBMJargeblock_io file hint.), Figure 8
compa.res l.he result, s of framing the cont.iguous benchmark wilh M Pl dal.a, shipl)ing ena.bled (IBM_largeblock_io
set, t,o "false") 1,o the same runs wit.h MPI data shipl)ing disabled (ll3M_la.rgel)lock_io set. to "true"). MPI da.l.a
shipl)ing is enabled I)3; default in MPI- ()/(IPFS but t.he defaull, in the I)enchma.rk is to override thai.. 7
COml)a, rison, we also include resull.s obtained wit.h ROMIO and P()SIX.

With dat.a shipl)ing disabled, t,he perl’orma.nee or MPIdO/(IPFS is sl, rikingly similar/.o t,he I/OMIO and.
POSIX versions of the benehmarl(. These t, hree versions exhiloit a. sat, ura.lion of (IPI:’S’s ability I.o process
l.he data with sa.t, ura.tion occurring between 32 and 64 MP1 tasks.

For i.he com.iguous I~enchmark wfl.h large file regious, eonl,enl.ion of l.asks wri~.ing ~.o l.he same GPFS
block is non-exisl,elll.. Therefore, the logic and data. movement involved in da.l.a shipl)ing is purely overhead::
For l.ask mmd)ers below 6,1, performance is less wilh da.i.a shipping enabled. The overhea.d of data. shipping
has an inl.eresl,ing effeel, for larger l.ask numbers (64 and 128). We surmise I, hal. l.he overhead reduces lhe
ral.e of queueing requesl.s l.o (;PFS providing a sort. of tlow toni.tel which leads I,o bet, t.er pert’orlmmce with
l, hese Ia.rge l.ask numbers.

In Figure 9, result.s o[’ I.he contiguous I)enchnmrk for read ol)era.t, ions are displa.yed. Again wit.h dat.a.
shipping disabled, M PI-IO/(IPFS performs like t, he POSIX or ROMIO versions o[" the benchmark. In the
case of reads, the da.l,a, layoul, is such l.ha.t no da.l,a shipping is needed for opl.imal performa.nee. How eollt.rol
(or lack of it,) is not. an issue for t.he read test& Enabling dal.a shipping int.roduces addit, iona.l overhead, and
t, he read perl"ormance wit, h da.l.a, shipping enabled is eonsistelat.ly lower than with the el,her three versions of’
t, he benchmark.

The rm/.ge o(’ measured wrile baudwidt, hs [’or (,he cont, iguous I)enchrnark was observed t.o depend on
st, al, us of da.t.a shipping (corn, rolled by lhe va.lue of lhe IBM_largeblock_io hint,). This va.riabilil,y of measured
perl’ormance is pa.rt,icularly evident, for larger numbers of {,asks. In Figure 10, we produce t.he sl.a.ndard
devia.i.ion, o-, of the aggregarl,ed writ.e I)andwidl, h [’or t.he l.wo cases,

/ \~ "~ z\-, -,2

= V
where ;r Is a single I)andwidl,h measuremenl a.nd ’l~ is I.he lmmber o[’ ll3easul’ClllelllS. (\¥e removed one dal,a.

poinl, from our sample that. had a very low value pot.enLia.lly due t.o syslem problems.) The sta.nda.rd devialion
wil, h da.l,a shipl)ing enal)led exceeds I, he st, a.nda.rd deviat, ion wit, h dal, a shil)l)ing disabled t’or exl)eriment.s wil,
:{2 or grea.ler mmd)er o[’ tasks. For 128 tasks, 1,he sta.nda, rd devia,tion with dat, a shipping is ?,5 times la.rger.

II

A 1)l)rova.l l)ra.[’t.

The dat’a is for MI)I-I()/({I)I"S only, since IJle resllll.s [()1" I{.OMIO and"POSIX a.re very sinlila.r t’o
obl.a.ined wil, h M PI-IO/(41>I"S and data. shil)l)ing disa.1)led.

A i)ossible expla.nat, ion for the dependence on da.l,a shil)ping, o1’ t’he variabilil, y (exl)ressed in t,ernis of t’he
sl.andai’d devia.t’ion) of l.he nieasured I)&ndwidt’h is lhe following. When data. shil)l)itlg is enabled, all dat’a
ilillSt’ l)e sel/l, froth I.he t.asks I.o l,he 1/O ageill, S, a.nd wrii.e ca.lls are issued by t’he lie agent,s. We aol.ice a.n
hicreashig w~.riabilit’y hi l.he ban(Iwiclt.h with a.li hlcreasing lilil-l’ll)er of t,a.sks since t’here is iiiore eont’ent’ion
for swit.eh a.ccess a.iid t)ecaliSe all i.asks are t’ryhig t’o send da.i.a (:oncurrent, ly t’o eax~h I/O a.geiil.. \¥hen (la.t.a
shil)l)ing is disabled, i.e., l, he IBMJargeblockJo is sol. t’o "true", l, here is no message passing o(:cIIrrillg I)ei, ween
t’he MPI tasks a.nd the I/O agenl.s dul:ing dat’a, a.ecess ol)erai.ions, flere, t’asks a.re iss,ing 1/O calls l.o (~PI?S
direct.ly. In t’his la.t.t’er ease, l.lle va.riabilii, y in the lneasurement.s goes down t.o an a.hnosl, insignifica.ni, level a.t’
larger nunll]ers of t’asks. The t>m’nover ip. t’he st.a.nda.rd deviat’ion curve wiLhout dal.a, shil)l)ing oeetirs when
the wril, e rales beg 1 t’o sal.urat’.e I)eca.use of" t’he la.ck of flow cont’roi in (.-~PFS 1.2. In Sllnlnla.ry, iisers Oll
I)l:o(hl(:l.ioll nla.chille Sllch as i.his Olle nl.a.y see a. la.rge w~.riabilii.y ill t’heir write perl’orllla.n(:e, for large lltlllll)ers
of t’asks with da.t’a shil)l)ing, a.nd significantly reduced varia.bilit’y in t, heir writ’e perforniance wil,hout’ da.t’a.
shipl)ilig.

4.2.2 Discontlguous Benehniark

The diseont’iguoils ben(:hinark (described in Seet’ion d. 1.2) lnatkes use of t’he Ol)t,inlized collect,ive operat,ions
wit’h dai,a shil)l)ing eimble(I. The file size in l, his benehma.rk anlount’s t’o :];]3 MBytes per MPI i, ask. Aga.in,
the I>OSIX a.nd FI.OM10 v(,rsioiis of t’his I)enchillarl< a.re coml)a.red to MPI-IO/(-IPb’S.

In l,’igure II, results of l.lw writ’e l)el’l’orll]all(:e t’esl.s (’or l.he (]iscont’iguolis I)enchn/arl< a.re l)resent’ed.
hiil, ially, l.he niosl, sl.ril<illg asl)ecl of the i)lof is l.he disnial l)erfornianee when using the st’raighi, POSIX
interfax:e. It. is however nol. so surprising i.ha.i, wril.ing t’o a GPI"S file sysi.em in one I(B I)1o<:1< lea.ds i,o
vel’y poor I)er[’ormallce. I~]xl)erinie/lt.al result’s show t’ha.t, M t)I-IO/(IPIeS with da, t’a shippii/g disabled lea,ds
1.o qlialit, a.l, ively similar l)el’fornlallc’e.

In ldgilre 12, result’s of’ i.11(~ read l)erforma.nce for l.he discont.iguous benchmark are pi’~’seili.ed. Again, I.he
I)erfornia.nce of the I>OSIX version of t’he t’est’ shows l)oor I}erfornla.nce as we would expecl.. MPI-IO/(:IPI,’S
and FI.OMIO show good i)erforilla.nce, achieving over 375 M B/see and 7,50 MB/see resl)ect’ively.

IteM IO shows subsl.a.nl.ial ol)l.imiza.t’ion of t’he 1/O in conll)arison t’o the POSIX results. The l)erforn]a.nce
of’ I~.OMIO shows qua.lil.alively dift7went’ behaviors for the write a.nd the read t’est’s. Where l)erfornia.nce of
t, he read test’ is sealing well, perfolTna.nce of t.he write t’esl, l)eaks ill t, he neighborhood of 32 nodes and l.hen
declines a.s t.he liumber of’ l, asks increases.

We SUSl)ecl, t.ha.t.t.he a.ddit’ional load 1.o (-IPFS of t’he reacl - niodify - write cycle for da.l.a sievil/g
R.OMIO has led t.o t.he sa.me sort’ of flow cont’rol issties not’ed in t’he writ’e l)erforlnance of t’he conl,iguous t,es/..

[ThaF99].

MPI-IO/GPFS shows the I)esl, write performa.nce in the discolH, iguous 1)enchma.rl< rea.ching over 300
MB/sec and t,he best’ l)erf’ormance in t,he read t,est’, reaching over g75 MB/see. This demonst’rat’es l, he benefit’
of" using (la.t.a. shipping coral)fried wil, h collect, ive ol)era.t’ions , leading t,o good scalal)ilil, y for both rea.d a.nd
wl’it,e operat’ions.

4.2.3 GPFS File Partitioning Ben(:lnnark

The (]PI"S file I)a.rt’it’ioning I}enclin/ark set<s t’he IBM_largeblock_io hint< l<o "false" a.nd 1,he IBM_io_buffer_size t,o
16M B. The MPI_MODE_UNIQUE_OPEN file Inode is set. (resl). UllSel.) when opening t, he file in order 1.o enable
(resl). disahle) (IPI"S file l)a.ri.it’ioning. The (TPI~S file l)art.it, ioning benchniark was rtln Oil 1, 2, ~1,
t.a.sks, wit’h Olle i,a.s],; per node. 10000 8I<B blocks were rea.d or wril.t’en by ea.c]l t’a.si{ from or l.o i,he File. lie
I)andwidt.h was ll]eastlre(1 f’or sl2Yell rel)lica.t.ions of t’he same eXl)el’illlellL

The resiilt.s [’or writ’e Ol)era.l.ions a.re shown ill Figure 13. Clea.rly, ena.bling (I PITS file l)art, il.ioiling resul/,s

12

AI)prova.I I)ra.ft

in substantial I/O I)erforma.nee improvenlent in l.he case of writes.

The resull.s for rea.d ol)era.i.ions ;are shown ill Figure 1,1. There is no significant difference between
ena.l~ling a.nd clisabliug GPFS file pa.rtitioni,g in the case of reads, since tokens gra.nted once axe never
revoked wlmn tile blocks a.re a.ceessed only in read-read sha.ring mode.

4.2.4 Mnll;iF, le Access II,ange Bellchmark

The multiple access range I)enehmark was run on 1, 2, 4, a.nd 8 tasks. The number of (~l)li’S I)loeks accessed
by each task was 100 and the size of ea.ch sub-I)lo(:l,: was :l 1(13. C, ombi na.t.io||s of va.rious lm nll)ers of’ sub-bloclcs
(I, 2, 8, 16) a.nd various va.lnes for ma:r_occ (0, 1,2, 4, 8) were experinmnted wil.h. A value of zero for ma:r_acc
lnea.ns thai. the (]PFS nmlt.iple access range hint is not used and therefore no pre[btching a.nd releasing of
byte ra.nges is perfor|ned. The results of the l)mltipte access ra.nge I)enehma.rl,: obta.ined for 8 tasks and
s||b-bloclcs accessed in each G PI:S block a.re shown in Figure 1,5 for the various va.lues of ma:r_acc. I:[esults
of seven replications of the same experiment were a.veraged to get. the ba.ndwidth da.ta.. Substa.ntial 1/O
l)erforma.nee improvement ca.n I)e observed, compa.ring the result of ena.bling the use of the (IPI:S multiple
a.ccess range hint. (max_ace set. to 1, 2, 4, 8) and of disabling it. (max_ace set. to 0). It also clea.rly a.ppears
that lower values for ma:r_acc lead to better per[’orma.nce inq)rovement., especially for reads which benefit
the most from the use of the GP’ I:S’ multiple access range hint (as already observed in Section 2.2)

Figure 16 shows the bandwidths obtairied for the va.rious numbers of tasks with 16 sub-blocks accessed
in each (IPFS block a.nd the values of 0 (no use of (3PFS multiple access range hint) a.ncl 2 (a maximum
two GPFS blocks are accessed I)et.wecm two l)refetching opera.lions) fo|" ma,r_acc. The results show tha.t the
bene[iI, i)l’oduced by using I.he G PFS mult.il)le a.ccess range hint. increases with the nulnber of tasks aceessi||g
the [ile, again more ttol.iceably for reads.

5 Conclusion

This paper ilh|sl.rates how careful or even clever use of tile hints can a.llow users to improve the i)erforma.nce
of their MPI-10 a.i)plica.ti(ms on top of the IBM (~ene|’al Pa.ra.llel File System. l)ata, shipping is a. cleax winner
when da.t.a is read-write or writ.e-write shared a.mong several tasks. Increasing the stripe size and the I/O
agent buffer size leads to better performa.nee, i)rovided the al)plication can spa.re the Imffer space. We also
show how the M PI-IO/GPFS prototype itself makes use of (]PFS hints in order to optimize prefetching and
|||ini|nize the number of request.s made to the stora.ge device servers. Lastly, M PI-I()/(I P FS robustness a.nd
user-friendliness is illusl.ra.ted t.hrough it.s error reporting ca.pa.bility, whicla prevents (leadlocks which may
result. From errors occurring on a subset of the tasks pa.rtieil)ating in a collective I/O operation.

We are current.ly i|lvestigating v~,hether double buffering a.t. the 1/O agenl ca.n lead t.o increa.sed perl’or-
ma.nee. We axe also examining whether da.ta sieving, Mready used in FI.OMIO [ThaF99], could be beneficial
to our prototype implementation. \,Ve a.re pla.maing to s|.udy whether feedback from GPI:S about the block
hit ra.tio induced by its buffer cache replacement and prefetching policies or about the I/O request, service
tame a.t the server side ca.n be exploited by MPI-IO so tha.t it ca. a.da.pt its own prefetching policy or help
(~I PFS eoni.rol the l/O request flow to an overloaded server.

We a.re also starting to define synthetic benchmarks which can, t.hrough the setting of multiple pa.-
ramel,ers sl,udy a.nd compare the l;)er[’orma,||ce of various MP]-IO implementa, tions [’or several classes of
nmlI.i-t.hrea.ded al)plicaI.ions. The nulnl)er of threa.(Is accessing lile da.ta, com:m’rentty allows 1.o cont.rol I.he
level of overla.p bet.wean conq)ut.ation a.nd I/O exhibited by the a.pplication and l.o ewdua.l.e I.he impact on
the a.pplica.tion i:)erik~rmance of threa,d scheduling policies.

13

AI)proval I)vaft

6 Acknowledgements

The a.ut, hors would like to l, hank I{obel’t, l(im Ya,tes for his thorough reviewing of the pa.per a.nd for the
valuable connn{mt8 he provided. The ASCI Blue Pacific 8yst, el]l and the SP2 sysl,eln at, l,he IBM T..}.
Watson were use’d for the eXl)eriment, at, ion. We’ a, lso I,ha.nk ol, he, r users of these sysi,enls for t, hciv l)at~ience
a.nd mlderst, anding, a.s well as the adminisi, ra,tors of t,h(~se S T;S~[,Olll;"; I’()P t,,heir assisi, a, nce in SOi,{,illg up ~[,he
a, pl)ropria,t(~ system (:onfigm’ai,ion.

References

[AS(’,1.(19]

[C, or96]

[For.{)7]

[G P FS.q8]

[ln{,l’o]

[.ion{}{}]

[Pal,enl,]

[ThaF!)9]

[]’ham 99]

[Vest, a]

w’urw.lhd.govlasci/

P. C.orl)ei.t, D. l,’eil.elson, S. Finet)org, Y. llsu, B. Nit, zberg, J.-P. Prosi., M. Snir, B. ’IYa.versa.t,
a.nd P. Wong, (’,hal)t.er in h~put/Oulput in Paralld and Distribute:d Compuler ,<¢!lsle’ms, Ha.vi ,]a.in,
John Wert.h, and ,]anies {,’,. Browne, Eds., Khlwer Acadenfic Publishers, June 1996, l)p. 127 1:16.

Messa, ge Passing h-iterl’a, ce I"ortun, MI)i-2: A ’me.s,s(tge’-pa,ssing interJhce’ sl, and¢rrd, St, ap.dards l)oc-
iIlilellt 2.{}, University o[" Tennessee, l(noxville, .luly 1997.
w’w~,. mpi-:orum, or://doc.@loc,~.t#ml.

11311.1 Gcm ral Parallel File’ ,5)/sle’m for AIA’: Installed, ion rind /hhninisl, ration Guide, IBM Docu-
menl, SA22-7278-02, O(q,ober 1098.

www. rs6000, ibm. c~m~rc.~urce ~:6~r-rt~.s~urc~..~.s~-b~ks ~gpf~ ~ i’~sl:dl-admin ~ ins~all-:Mntitz-v l r2 /gpfe I m,~l. html.

An bllmdu{lion h} (ll)P’5 ’ t{1.2,
w u,u~. rs6OOO, ib m , co m /r~ so ttvcc /lech.nolog !j/l}{tpe..i, l.hh M.

T..lones, A. l(oniges, and K. Ya.tes, PeJformance of lhe IBM General Parallel File 5’qstcm., Proc.
lni.erna.i.ional Parallel an{[Disti’il)ut.e{1 Processii]g Synll)osiuni, May 2000. +/\(:Cel)l,ed.

Pa.l.enl. 1 !S.%")50 lc).c), ,qchlinlck el. a.l., Paralle’l file .s.q.stcm aztd me’lhod for .qranting b!/t(mngc tokens,
IBM Ahnaden t/.(~sea.Ml, San .lose, CA 95120. Issued July 1999.

R. q’ha.kuP, W. (lrol)p, a.nd E. Lusk, Dala ,b’ievinq and Collective I/0 in ROMIO, PPoc. 7th
Synaposiunl on the Frontiers of Massively Pa.rallol C, omputation, Febl’uary 1999, Pl). 182 189.

R. Thakur, W. (3rOl)l), and g. lmsk, hnplemenlin.q MPI -lO Por lably and wifl t High Pet’-
formance’, Proc. o[’ file Sixth Worksho1) on l/O ill Parallel and Distribut.ed Systelns, May 1999,

I)P- 23-32.

P. C.orl)e{,t, a.nd 1). Peit, elson, De,sign and I’mplem.ciital, io~l. of the W’cst{t Pa’mllel File ,5)/st<’m, Pl’oc.
o{’ t, he Sca.lable High-Perforniance C.oml)ut, ing Coni~rence, May 1994, pp. 63-70.

This work was performed under the auspices of the U. S. Department of Energy by

the University of California, Lawrence Livermore National Laboratory under

Contract No. W-7405-Eng-48.

14

A pprovaJ Draft,

Appendix

Mapping: Each client node is a server, serving Mapping: Each client node is a server,

1 file block per client instance 6 f’ile blocks per cl~

Parameters: partition size: 1 block robin in decending o~

number of nodes: 8 Parameters: partition size: 6 block

server list: i, 2, 3, 3, 4, 5, 6, 7, 8, 8 number of nodes:

server list: 4. 3.

7

SP Nodes SP Nodes

2 i

4 3

6
5

8 7

Client Application Instance

8

Client Application Instance

15

Approval Dra, fl,

Strided Reads

8O

7O

2O

i0

[] Close stride Distributld locking

---~---Close stride - File partitioning

.... O---Wide stride - Distributef locking ..

[’"’"-~-’"wide stride - File partitioning~

....-.."

////

/ /

./’~//

.........
0 50 i00 150 200 250

Record Size in Khytes

Figure 2: Read performance a.chieved by (~PFS file part, it, io.ing

1 (5

0%C00~0STOOTOS0

OT

0L

08

150

125

i00

~ 75

0
0

5O

25

Random 40000B write,

X

0

)I(

X ¯

)< "i0t"

seconds)

no hints

¯ ~---Biock prefetch

¯ i-’-’-Block fetch
I

>(Write data

I
--~---Block writebehi~d

---O---Synch block write

"O

oo

¯ ¯

i i

15 20

Figure -’I: 1Dfl’e<::l,s on (IPIi~S l)Z’ef>t, cl~ tbr ra.ncloin workloads

18

A l)l)roval Dra.fl,

M
0

o
o
,-t
m

150

125

i00

75

5O

25 AA~

0

,~1t-0

Random 40000B write,

AY6a9

A >l~---<)

AA

AS~

]

0.5

A~(--O

with hints

A~
AA ~-o

.... ~---Block prefetch

.... ~--’Block fetch
I

’ X Write data
I

--G--Block writebehipd

---O---Synch block write

A~o

AA~<D

AA
Ak~-O

A-.-.-X~-~___O
T r r

~’-O

T -7 F

1.5 2 2.5

Elapsed time (seconds)

3 3.5

ldgure 5: I~ff’ect, s on (;PFS prefet,(;h tbr random workloads wit, h hint,s

19

Approval I)ra.[1,

i00

9O

8O

3O

2O

10

Random workload

.... <]}--’-Random reads

.... O---Random reads with hints

........ ~......,.Random writes

Random writes with hint~

---+---Random Writes with hint:

File partitioning

and ~

7

s

jj...’J"

..:
,J

.............. ~ +

/..,.,":~-~=~- .~=:r::7

.Y

i

0 50 i00 150 200 250
Record Size in Kbytes

l"igur(, 6: Read a.nd Writ,e l)ert’ornmnce achieved by GPt ,.. on Random workloads with and withoul, hint,s,

and wid~ Ifint,s and file pa.rdt,ioninZ

MPI

Task

Responsible for accesses

t~ GPFS blocks

0-15.32-47.64-79

Main Thread]- MPI ~ Main Thread

/I/O Agent i I/O Agent

.................... ’

{

I
readO/write0 readi;/wriie0

MPI

Task

Responsible for accesses

to GPI~S blocks #

16-31, 48-63.80-95

GPFS GPFS

Figure 7: (IPFS block a.lloca.l, ion used by MPI-IO/(~PFS in da.l,a shil)ping mode (using t, he defa, ult, st,

size)

2O

/\pprova[I) ra,[t,

rn

v

t’--
"0

c--

rn
"0

<:

1400

1200

IOO0

8O0

600

400

200

I I I I I

,/.:,..’.:,’,.,
.¢" .::,,,

II ." "’,,\0.

I .." -:.;..,, ,,
/f "-

//] f’
// .."

tl

i//,*"
/],’

/:

MPI-IO/GPFS with data shipping o
MPI-IO/GPFS without data shipping -+---

POSIX --x
ROMIO -~---

0 I I I I I I

4 8 16 32 64 128
Number of Tasks

Figure 8: k,laximum l)andwidt, hs measured for writ, e opera.l,iolls in t, he cont, iguous benclmmrk

21

,,l.ve~UtFm~ q ,quou,~!luo:) aql u! suo!’lt: .tado p,e,,~.t .lot. /)a.mseatu .qqlp!A,q)ue, q umuqxe,l~ :6 a,m,~!.j

---’~- OIIAlOId
..... >4--XISOd
.--+- 6u!dd!qs e;ep].noql.!M S-IdU’-O/Ol-ldlAI

o 6utdd!qs el.ep ql-tM SJdD/Ol-ldlAI

III

/...p~ ,+.+*

........... ¥-

00"17

009

-000 I..

-00i31-

00171-

009 I-

I J OOg 1-

3>

(b

(b
e’b
O3

1:3.,.

e’~
Cr"

.cat)

l.t’t+,t CI I’U;’.o,td d ¥"

Approva] 1)ra, l’t,

250

0

I I I I I I

/d MPI~u ata shipping -+---

I I I ~

I I I I I 1

4 8 16 32 64 128
Number of Tasks

Figure 10: Eft’cot, of’ data, shipl)ing on measured sla.nda.rd devia,t, ion for the coHt, iguous wrile I)enchmark

23

A pl)rowd I)ra.fl,

350

300

250

200

150

100

5O

0

I I I I

MPI-IO/GPFS -<>
POSIX --x

~/~- -J~
- A

ROMIO -~-

iI"
"~-~,~.,.

~v.-~ ->(,~.+.
¯ - " ... v ;’lv

4 8 16 32 64 128
Number of Tasks

Figm’e l l: Maximum l~anchvidt, hs measured fbr writ.e opera.t.ions in l.he discont.iguous benchma.rk

iX Pl)rova.] I)raR,

09

v

C--
,4--.)

c-

Cn

400

350

3OO

25O

2O0

150

100

5O

0

I I I I I I

-" MPI-IO/GPFS o
m

_/i/~

ROMIO -A- - -

~.×.
............ X XI I ’>~- I I I

4 8 16 32 64 128
Number of Tasks

l"igure 12: Ma.ximmm bandwidt, hs mea.sured [br rea(I opera(,iotls in t, he discont, iguous I)eH<4mlark

25

A pprow~t l)ra[’(

3 I I I I

2.5

m

1.5 -

1 -

0.5 -

J

.... -°’X

.....*"

°o .-,’"

with GPFS file partitioning o
without GPFS file partitioning x

0 I I I I

1 2 4 8
Number of Tasks

Figure 13: Averaged I~an(lwidths measured tbr write Ol)cralions in the GPFS file l)artitioning benchlnark

2(;

Approval Draf’t

3 I I I

2.5

2

1.5

0.5

0

with GPFS file partitioning o
without GPFS file partitioning ---><

I I I I

1 2 4 8
Number of Tasks

lggure 14: Averaged bandwidt, hs measured [br read opera t, ions ill l, he (;)I?S file par|,it, ioning I)en(:hma,rk

27

Approval DraR,

14
I I I

12

10

8

6

4

2

........................ X ..

read operations o
write operations ><

0
0

I I I I

1 2 4 8
max_acc

Figure 115: Averaged bandwidl,hs measured on 8 tasks for va.rious values of ma;c_acc when ea.ch t, ask a,ccesscs

16 4KB sub-blocks out, o[" ea.ch of’ l()0 GP[’ ’~S’ file blocks

28

14

12

10

8

6

4

2

0

I I I I

read without GPFS MAR hint <> x

_ read with GPFS MAR hint x
write without GPFS MAR hint -+--

write with GPFS MAR hint -[]--

.....-"’"""’"

..~’"

. ,,’""

. ,, ,-’""

.y. ,¯¯’¯

_ [21-- []

I I I I

1 2 4 8
Number of Tasks

Figul’e]6: Averaged baJldwidlhs measured wit, hour, l,he use of" l, he (;PFS mult, iple access range hint and

when a l]mximum o[’ 2 (,P ,_ blocks are accessed bel,we(.m two l)rel’~t, ehing opera l, ions each t, ask accesses

16 41(B sul~-I~locks out. of ead~ o1’ 100 (;PFS file blod<s

